Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 196: 115482, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37864857

RESUMO

The adoption of Unmanned Aerial Vehicle (UAV) remote sensing for the regulatory monitoring of turbidity plumes induced by land reclamation operations remains a difficult task. Compared to UAV remote sensing on ambient turbidity in estuaries and rivers, such monitoring of construction-induced turbidity plumes requires significantly higher spatial resolutions and accuracy as well as wider turbidity ranges with nonlinear reflectance. In this study, a pilot-scale deployment of UAV-based hyperspectral sensing is carried out for this objective, with specific new elements developed to overcome the challenges and minimise the uncertainties involved. In particular, Machine learning (ML) models for the turbidity determination were trained by the large dataset collected to better capture the non-linearity of the relationship between the water leaving reflectance and turbidity level. The models achieve a good accuracy with a R2 score of 0.75 that is deemed acceptable in view of the uncertainties associated with construction and land reclamation work.


Assuntos
Tecnologia de Sensoriamento Remoto , Dispositivos Aéreos não Tripulados , Meio Ambiente
2.
Waste Manag ; 162: 43-54, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36933447

RESUMO

A multiphase CFD-DEM model was built to simulate the waste-to-energy gasifying and direct melting furnace in a pilot demonstration facility. The characterizations of feedstocks, waste pyrolysis kinetics, and charcoal combustion kinetics were first obtained in the laboratory and used as model inputs. The density and heat capacity of waste and charcoal particles were then modelled dynamically under different status, composition, and temperature. A simplified ash melting model was developed to track the final fate of waste particles. The simulation results were in good agreement with the site observations in both temperature and slag/fly-ash generations, verifying the CFD-DEM model settings and gas-particle dynamics. More importantly, the 3-D simulations quantified and visualized the individual functioning zones in the direct-melting gasifier as well as the dynamic changes throughout the whole lifetime of waste particles, which is otherwise technically unachievable for direct plant observations. Hence, the study demonstrates that the established CFD-DEM model together with the developed simulation procedures can be used as a tool for the optimisation of operating conditions and scaled-up design for future prototype waste-to-energy gasifying and direct melting furnace.


Assuntos
Carvão Vegetal , Resíduos Sólidos , Resíduos Sólidos/análise , Cinza de Carvão , Temperatura , Temperatura Alta , Incineração/métodos
3.
J Environ Manage ; 302(Pt B): 114080, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34773781

RESUMO

The present study investigates the environmental benefits of phasing-in autonomous ships in global maritime transportation along major dry bulk and tanker routes using Bayesian probabilistic forecasting algorithm. The focus is on the simulations and calibrations on the navigational behavior of autonomous ships at both port and high-sea, as well as the potential emission abatement of atmospheric pollutants compared to the conventional fleet along the sailing routes. We use historical data on major international tanker and dry bulk trade routes to characterize the ship movements and trends in ship emission. Different scenarios are evaluated with a combination of autonomous ship phase-in rates (25, 75, 100%) and cleaner fuel choices in Years 2030 and 2050 (from the baseline Year, 2020). The results show that the magnitude of the emission reduction generally increases with a higher level of autonomous ships in the fleet as expected, and the magnitude ranges from small increments to major reductions of 37-64% along the different routes. Overall, we hope that our findings can contribute towards the realization of environmental benefits with the adoption of autonomous shipping along the major shipping routes in the future.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Poluentes Atmosféricos/análise , Teorema de Bayes , Navios , Meios de Transporte , Emissões de Veículos/análise
4.
Environ Res ; : 112246, 2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34699761

RESUMO

This study aims to investigate the coronavirus disease (COVID-19) pandemic effects and associated restrictive rules on ship activities and pollutant emissions (CO2, SOX, NOX, PM, CO, CH4) in four major seaports, namely the Ports of Singapore, Long Beach, Los Angeles, and Hamburg. We used 2019 as the baseline year to show the business-as-usual emission and compared with the estimated quantity during the July 2020-July 2021 pandemic period. We also project future ship emissions from August 2021-August 2022 to illustrate two potential port congestion scenarios due to COVID-19. The results show that the ship emissions in all four ports generally increased by an average of 79% because of the prolonged turnaround time in port. Importantly, majority of ship emissions occurred during the extended hoteling time at berth and anchorage areas as longer operational times were needed due to pandemic-related delays, with increases ranging from 27 to 123% in the total emissions across ports. The most affected shipping segments were the container ships and dry bulk carriers which the total emissions of all pollutants increased by an average of 94-142% compared with 2019. Overall, the results of this study provide a comprehensive review of the ship emission outlook amid the pandemic uncertainty.

5.
Molecules ; 26(11)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205198

RESUMO

In this study, molecular dynamics simulation is used to investigate the effects of water-based substitutional defects in zeolitic imidazolate frameworks (ZIF)-8 membranes on their reverse osmosis (RO) desalination performance. ZIF-8 unit cells containing up to three defect sites are used to construct the membranes. These substitutional defects can either be Zn defects or linker defects. The RO desalination performance of the membranes is assessed in terms of the water flux and ion rejection rate. The effects of defects on the interactions between the ZIF-8 membranes and NaCl are investigated and explained with respect to the radial distribution function (RDF) and ion density distribution. The results show that ion adsorption on the membranes occurs at either the nitrogen atoms or the defect sites. Complete NaCl rejection can be achieved by introducing defects to change the size of the pores. It has also been discovered that the presence of linker defects increases membrane hydrophilicity. Overall, molecular dynamics simulations have been used in this study to show that water-based substitutional defects in a ZIF-8 structure reduce the water flux and influence its hydrophilicity and ion adsorption performance, which is useful in predicting the type and number of defect sites per unit cell required for RO applications. Of the seven ZIF-8 structures tested, pristine ZIF-8 exhibits the best RO desalination performance.

6.
Environ Pollut ; 270: 116068, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33288294

RESUMO

With increasingly stringent regulations on emission criteria and environment pollution concerns, marine fuel oils (particularly heavy fuel oils) that are commonly used today for powering ships will no longer be allowed in the future. Various maritime energy strategies are now needed for the long-term upgrade that might span decades, and quantitative predictions are necessary to assess the outcomes of their implementation for decision support purpose. To address the technical need, a novel approach is developed in this study that can incorporate the strategic implementation of fuel choices and quantify their adequacy in meeting future environmental pollution legislations for ship emissions. The core algorithm in this approach is based on probabilistic simulations with a large sample size of ship movement in the designated port area, derived using a Bayesian ship traffic generator from existing real activity data. Its usefulness with scenario modelling is demonstrated with application examples at five major ports, namely the Ports of Shanghai, Singapore, Tokyo, Long Beach, and Hamburg, for assessment at Years 2020, 2030, and 2050 with three economic scenarios. The included fuel choices in the application examples are comprehensive, including heavy fuel oils, distillates, low sulphur fuel oils, ultra-low sulphur fuel oils, liquefied natural gas, hydrogen, biofuel, methanol, and electricity (battery). Various features are fine-tuned to reflect micro-level changes on the fuel choices, terminal location, and/or ship technology. Future atmospheric pollutant emissions with various maritime energy strategies implemented at these ports are then discussed comprehensively in details to demonstrate the usefulness of the approach.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Poluentes Atmosféricos/análise , Teorema de Bayes , China , Navios , Singapura , Tóquio , Emissões de Veículos/análise
7.
Risk Anal ; 40(1): 8-23, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31313353

RESUMO

Reducing the incidence of seafarers' workplace injuries is of great importance to shipping and ship management companies. The objective of this study is to identify the important influencing factors and to build a quantitative model for the injury risk analysis aboard ships, so as to provide a decision support framework for effective injury prevention and management. Most of the previous research on seafarers' occupational accidents either adopts a qualitative approach or applies simple descriptive statistics for analyses. In this study, the advanced method of a Bayesian network (BN) is used for the predictive modeling of seafarer injuries for its interpretative power as well as predictive capacity. The modeling is data driven and based on an extensive empirical survey to collect data on seafarers' working practice and their injury records during the latest tour of duty, which could overcome the limitation of historical injury databases that mostly contain only data about the injured group instead of the entire population. Using the survey data, a BN model was developed consisting of nine major variables, including "PPE availability," "Age," and "Experience" of the seafarers, which were identified to be the most influential risk factors. The model was validated further with several tests through sensitivity analyses and logical axiom test. Finally, implementation of the result toward decision support for safety management in the global shipping industry was discussed.

8.
Environ Sci Technol ; 53(11): 6374-6382, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31079458

RESUMO

A molecular-level understanding of the structure-property relationship of polyamide (PA) active layers in thin-film-composite membranes remains unclear. We developed an approach to build and hydrate the PA layer in molecular dynamics simulations and reproduced realistic membrane properties, which enabled us to examine the composition-structure-permeability relationships at the molecular level. We discovered the variation of pore size distributions in the dry PA structures at different monomer compositions, leading to different water cluster distributions and wetting properties of hydrated PA films. Membrane swelling was linearly dependent on the degree of cross-linking (DC), and higher water flux was obtained in the more swelling-prone PA films because of the transition in water transport mechanisms. Continuum-like and jumping transport both occurred in PA films with smaller DC, where visible and more persistent channels existed. In the denser films, water molecules relied only on the on-and-off channels to jump from one cavity to another; however, jumping transport was more pronounced even in the less dense PA films, and all the PA structures exhibited oscillations, which provided evidence for the solution-diffusion model rather than the pore-flow model. The results not only contribute to fundamental understanding but also provide insights into the molecule-level design for next-generation membranes.


Assuntos
Membranas Artificiais , Nylons , Filtração , Osmose , Permeabilidade
9.
ChemSusChem ; 11(16): 2710-2716, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-29975458

RESUMO

A metal-organic framework (MOF)-modified bismuth vanadate (BiVO4 ) photoanode is fabricated by an ultrathin sheet-induced growth strategy, where ultrathin cobalt oxide sheets act as a metal source for the in situ synthesis of Co-based MOF poly[Co2 (benzimidazole)4 ] (denoted [Co2 (bim)4 ]) nanoparticles on the surface of BiVO4 . [Co2 (bim)4 ] with small particle size and high dispersion can serve as a promising cocatalyst to accept holes transferred from BiVO4 and boost surface reaction kinetics for photoelectrochemical (PEC) water oxidation. The photocurrent density of a [Co2 (bim)4 ]-modified BiVO4 photoanode can achieve 3.1 mA cm-2 under AM 1.5G illumination at 1.23 V versus the reversible hydrogen electrode (RHE), which is better than those of pristine and cobalt-based inorganic materials-modified BiVO4 photoanodes. [Co2 (bim)4 ], with porosity and abundant metal sites, exhibits a high surface charge-separation efficiency (83 % at 1.2 V versus RHE), leading to the enhanced PEC activity. This work will bring new insight into the development of MOF materials as competent cocatalysts for PEC water splitting applications.

10.
Phys Chem Chem Phys ; 19(45): 30551-30561, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29115322

RESUMO

Stacked graphene (GE) membranes with cascading nanoslits can be synthesized economically compared to monolayer nanoporous GE membranes, and have potential for molecular separation. This study focuses on investigating the seawater desalination performance of these stacked GE layers as forward osmosis (FO) membranes by using molecular dynamics simulations. The FO performance is evaluated in terms of water flux and salt rejection and is explained by analysing the water density distribution and radial distribution function. The water flow displays an Arrhenius type relation with temperature and the activation energy for the stacked GE membrane is estimated to be 8.02 kJ mol-1, a value much lower than that of commercially available FO membranes. The study reveals that the membrane characteristics including the pore width, offset, interlayer separation distance and number of layers have significant effects on the desalination performance. Unlike monolayer nanoporous GE membranes, at an optimum layer separation distance, the stacked GE membranes with large pore widths and completely misaligned pore configuration can retain complete ion rejection and maintain a high water flux. Findings from the present study are helpful in developing GE-based membranes for seawater desalination via FO.

11.
Phys Chem Chem Phys ; 19(24): 15973-15979, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28594023

RESUMO

Emerging two-dimensional (2D) ultra-thin nanomaterials are ideal candidates for next-generation high-throughput membranes. 2D carbon nitride C2N possesses intrinsic regular and uniformly distributed sub-nanometer pores which probably allow a high permeation flux. This work reports on the investigation of seawater pervaporation through a single-layered C2N membrane via a combined approach of first-principles calculations and molecular dynamics simulations. The C2N layer remains stable when the strain is less than a threshold point of 12% at which the pore size is enlarged by 50%. The strained C2N membrane only allows water molecules from seawater to permeate, and the water flux in C2N is enhanced by one to four orders of magnitude compared to that in other membranes. The water flux exhibits an Arrhenius-type relation with temperature. The hydrogen-bonding interaction among water molecules in C2N is weaker and decays faster than that in bulk water, which is because it is energetically unfavorable for water molecules to enter C2N. This proof-of-concept study suggests that C2N might be an appealing membrane material for seawater pervaporation.

12.
Phys Chem Chem Phys ; 19(12): 8552-8562, 2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28289740

RESUMO

The effect of the electric field and surface morphology of corrugated graphene (GE) layers on their capacitive deionization process is studied using molecular dynamics simulations. Deionization performances are evaluated in terms of water flow rate and ion adsorption and explained by analysing the water density distribution, radial distribution function and distribution of the ions inside the GE layers. The simulation results reveal that corrugation of GE layers reduces the water flow rate but largely enhances ion adsorption in comparison to the flat GE layers. Such enhancement is mainly due to the adsorption of ions on the GE layers due to the anchoring effect in the regions with wide interlayer distances. Moreover, it reveals that the entrance configuration of the GE layers also has a significant effect on the performance of deionization. Overall, the results from this study will be helpful in designing effective electrode configurations for capacitive deionization.

13.
Sci Rep ; 6: 38583, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27929106

RESUMO

The application of few-layered graphene-derived functional thin films for molecular filtration and separation has recently attracted intensive interests. In practice, the morphology of the nanochannel formed by the graphene (GE) layers is not ideally flat and can be affected by various factors. This work investigates the effect of channel morphology on the water transport behaviors through the GE bilayers via molecular dynamics simulations. The simulation results show that the water flow velocity and transport resistance highly depend on the curvature of the graphene layers, particularly when they are curved in non-synergic patterns. To understand the channel morphology effect, the distributions of water density, dipole moment orientation and hydrogen bonds inside the channel are investigated, and the potential energy surface with different distances to the basal GE layer is analyzed. It shows that the channel morphology significantly changes the distribution of the water molecules and their orientation and interaction inside the channel. The energy barrier for water molecules transport through the channel also significantly depends on the channel morphology.

14.
ACS Appl Mater Interfaces ; 6(20): 18180-8, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25308778

RESUMO

van der Waals heterostructures, obtained by stacking layers of isolated two-dimensional atomic crystals like graphene (GE) and silicene (SE), are one of emerging nanomaterials for the development of future multifunctional devices. Thermal transport behaviors at the interface of these heterostructures play a pivotal role in determining their thermal properties and functional performance. Using molecular dynamics simulations, the interfacial thermal conductance G of an SE/GE bilayer heterostructure is studied. Simulations show that G of a pristine SE/GE bilayer at room temperature is 11.74 MW/m(2)K when heat transfers from GE to SE, and is 9.52 MW/m(2)K for a reverse heat transfer, showing apparent thermal rectification effects. In addition, G increases monotonically with both the temperature and the interface coupling strength. Furthermore, hydrogenation of GE is efficient in enhancing G if an optimum hydrogenation pattern is adopted. By changing the hydrogen coverage f, G can be controllably manipulated and maximized up to five times larger than that of pristine SE/GE. This study is helpful for understanding the interface thermal transport behaviors of novel van der Waals heterostructures and provides guidance for the design and control of their thermal properties.

15.
Water Res ; 47(11): 3762-72, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23726713

RESUMO

Air sparging is now a standard approach to reduce concentration polarization and fouling of membrane modules in membrane bioreactors (MBRs). The hydrodynamic shear stresses, bubble-induced turbulence and cross flows scour the membrane surfaces and help reduce the deposit of foulants onto the membrane surface. However, the detailed quantitative knowledge on the effect of air sparging remains lacking in the literature due to the complex hydrodynamics generated by the gas-liquid flows. To date, there is no valid model that describes the relationship between the membrane fouling performance and the flow hydrodynamics. The present study aims to examine the impact of hydrodynamics induced by air sparging on the membrane fouling mitigation in a quantitative manner. A modelled hollow fiber module was placed in a cylindrical bubble column reactor at different axial heights with the trans-membrane pressure (TMP) monitored under constant flux conditions. The configuration of bubble column without the membrane module immersed was identical to that studied by Gan et al. (2011) using Phase Doppler Anemometry (PDA), to ensure a good quantitative understanding of turbulent flow conditions along the column height. The experimental results showed that the meandering flow regime which exhibits high flow instability at the 0.3 m is more beneficial to fouling alleviation compared with the steady flow circulation regime at the 0.6 m. The filtration tests also confirmed the existence of an optimal superficial air velocity beyond which a further increase is of no significant benefit on the membrane fouling reduction. In addition, the alternate aeration provided by two air stones mounted at the opposite end of the diameter of the bubble column was also studied to investigate the associated flow dynamics and its influence on the membrane filtration performance. It was found that with a proper switching interval and membrane module orientation, the membrane fouling can be effectively controlled with even smaller superficial air velocity than the optimal value provided by a single air stone. Finally, the testing results with both inorganic and organic feeds showed that the solid particle composition and particle size distribution all contribute to the cake formation in a membrane filtration system.


Assuntos
Reatores Biológicos , Membranas Artificiais , Ar , Desenho de Equipamento , Filtração , Hidrodinâmica , Tamanho da Partícula , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...